SUBROUTINE DTRMV ( UPLO, TRANS, DIAG, N, A, LDA, X, INCX ) ! .. Scalar Arguments .. INTEGER INCX, LDA, N CHARACTER*1 DIAG, TRANS, UPLO ! .. Array Arguments .. DOUBLE PRECISION A( LDA, * ), X( * ) ! .. ! ! Purpose ! ======= ! ! DTRMV performs one of the matrix-vector operations ! ! x := A*x, or x := A'*x, ! ! where x is an n element vector and A is an n by n unit, or non-unit, ! upper or lower triangular matrix. ! ! Parameters ! ========== ! ! UPLO - CHARACTER*1. ! On entry, UPLO specifies whether the matrix is an upper or ! lower triangular matrix as follows: ! ! UPLO = 'U' or 'u' A is an upper triangular matrix. ! ! UPLO = 'L' or 'l' A is a lower triangular matrix. ! ! Unchanged on exit. ! ! TRANS - CHARACTER*1. ! On entry, TRANS specifies the operation to be performed as ! follows: ! ! TRANS = 'N' or 'n' x := A*x. ! ! TRANS = 'T' or 't' x := A'*x. ! ! TRANS = 'C' or 'c' x := A'*x. ! ! Unchanged on exit. ! ! DIAG - CHARACTER*1. ! On entry, DIAG specifies whether or not A is unit ! triangular as follows: ! ! DIAG = 'U' or 'u' A is assumed to be unit triangular. ! ! DIAG = 'N' or 'n' A is not assumed to be unit ! triangular. ! ! Unchanged on exit. ! ! N - INTEGER. ! On entry, N specifies the order of the matrix A. ! N must be at least zero. ! Unchanged on exit. ! ! A - DOUBLE PRECISION array of DIMENSION ( LDA, n ). ! Before entry with UPLO = 'U' or 'u', the leading n by n ! upper triangular part of the array A must contain the upper ! triangular matrix and the strictly lower triangular part of ! A is not referenced. ! Before entry with UPLO = 'L' or 'l', the leading n by n ! lower triangular part of the array A must contain the lower ! triangular matrix and the strictly upper triangular part of ! A is not referenced. ! Note that when DIAG = 'U' or 'u', the diagonal elements of ! A are not referenced either, but are assumed to be unity. ! Unchanged on exit. ! ! LDA - INTEGER. ! On entry, LDA specifies the first dimension of A as declared ! in the calling (sub) program. LDA must be at least ! max( 1, n ). ! Unchanged on exit. ! ! X - DOUBLE PRECISION array of dimension at least ! ( 1 + ( n - 1 )*abs( INCX ) ). ! Before entry, the incremented array X must contain the n ! element vector x. On exit, X is overwritten with the ! tranformed vector x. ! ! INCX - INTEGER. ! On entry, INCX specifies the increment for the elements of ! X. INCX must not be zero. ! Unchanged on exit. ! ! ! Level 2 Blas routine. ! ! -- Written on 22-October-1986. ! Jack Dongarra, Argonne National Lab. ! Jeremy Du Croz, Nag Central Office. ! Sven Hammarling, Nag Central Office. ! Richard Hanson, Sandia National Labs. ! ! ! .. Parameters .. DOUBLE PRECISION ZERO PARAMETER ( ZERO = 0.0D+0 ) ! .. Local Scalars .. DOUBLE PRECISION TEMP INTEGER I, INFO, IX, J, JX, KX LOGICAL NOUNIT ! .. External Functions .. ! LOGICAL LSAME ! EXTERNAL LSAME ! .. External Subroutines .. ! EXTERNAL XERBLA ! .. Intrinsic Functions .. INTRINSIC MAX ! .. ! .. Executable Statements .. ! ! Test the input parameters. ! INFO = 0 IF ( .NOT.LSAME( UPLO , 'U' ).AND. & .NOT.LSAME( UPLO , 'L' ) )THEN INFO = 1 ELSE IF( .NOT.LSAME( TRANS, 'N' ).AND. & .NOT.LSAME( TRANS, 'T' ).AND. & .NOT.LSAME( TRANS, 'C' ) )THEN INFO = 2 ELSE IF( .NOT.LSAME( DIAG , 'U' ).AND. & .NOT.LSAME( DIAG , 'N' ) )THEN INFO = 3 ELSE IF( N.LT.0 )THEN INFO = 4 ELSE IF( LDA.LT.MAX( 1, N ) )THEN INFO = 6 ELSE IF( INCX.EQ.0 )THEN INFO = 8 END IF IF( INFO.NE.0 )THEN CALL XERBLA( 'DTRMV ', INFO ) RETURN END IF ! ! Quick return if possible. ! IF( N.EQ.0 ) & RETURN ! NOUNIT = LSAME( DIAG, 'N' ) ! ! Set up the start point in X if the increment is not unity. This ! will be ( N - 1 )*INCX too small for descending loops. ! IF( INCX.LE.0 )THEN KX = 1 - ( N - 1 )*INCX ELSE IF( INCX.NE.1 )THEN KX = 1 END IF ! ! Start the operations. In this version the elements of A are ! accessed sequentially with one pass through A. ! IF( LSAME( TRANS, 'N' ) )THEN ! ! Form x := A*x. ! IF( LSAME( UPLO, 'U' ) )THEN IF( INCX.EQ.1 )THEN DO 20, J = 1, N IF( X( J ).NE.ZERO )THEN TEMP = X( J ) DO 10, I = 1, J - 1 X( I ) = X( I ) + TEMP*A( I, J ) 10 CONTINUE IF( NOUNIT ) & X( J ) = X( J )*A( J, J ) END IF 20 CONTINUE ELSE JX = KX DO 40, J = 1, N IF( X( JX ).NE.ZERO )THEN TEMP = X( JX ) IX = KX DO 30, I = 1, J - 1 X( IX ) = X( IX ) + TEMP*A( I, J ) IX = IX + INCX 30 CONTINUE IF( NOUNIT ) & X( JX ) = X( JX )*A( J, J ) END IF JX = JX + INCX 40 CONTINUE END IF ELSE IF( INCX.EQ.1 )THEN DO 60, J = N, 1, -1 IF( X( J ).NE.ZERO )THEN TEMP = X( J ) DO 50, I = N, J + 1, -1 X( I ) = X( I ) + TEMP*A( I, J ) 50 CONTINUE IF( NOUNIT ) & X( J ) = X( J )*A( J, J ) END IF 60 CONTINUE ELSE KX = KX + ( N - 1 )*INCX JX = KX DO 80, J = N, 1, -1 IF( X( JX ).NE.ZERO )THEN TEMP = X( JX ) IX = KX DO 70, I = N, J + 1, -1 X( IX ) = X( IX ) + TEMP*A( I, J ) IX = IX - INCX 70 CONTINUE IF( NOUNIT ) & X( JX ) = X( JX )*A( J, J ) END IF JX = JX - INCX 80 CONTINUE END IF END IF ELSE ! ! Form x := A'*x. ! IF( LSAME( UPLO, 'U' ) )THEN IF( INCX.EQ.1 )THEN DO 100, J = N, 1, -1 TEMP = X( J ) IF( NOUNIT ) & TEMP = TEMP*A( J, J ) DO 90, I = J - 1, 1, -1 TEMP = TEMP + A( I, J )*X( I ) 90 CONTINUE X( J ) = TEMP 100 CONTINUE ELSE JX = KX + ( N - 1 )*INCX DO 120, J = N, 1, -1 TEMP = X( JX ) IX = JX IF( NOUNIT ) & TEMP = TEMP*A( J, J ) DO 110, I = J - 1, 1, -1 IX = IX - INCX TEMP = TEMP + A( I, J )*X( IX ) 110 CONTINUE X( JX ) = TEMP JX = JX - INCX 120 CONTINUE END IF ELSE IF( INCX.EQ.1 )THEN DO 140, J = 1, N TEMP = X( J ) IF( NOUNIT ) & TEMP = TEMP*A( J, J ) DO 130, I = J + 1, N TEMP = TEMP + A( I, J )*X( I ) 130 CONTINUE X( J ) = TEMP 140 CONTINUE ELSE JX = KX DO 160, J = 1, N TEMP = X( JX ) IX = JX IF( NOUNIT ) & TEMP = TEMP*A( J, J ) DO 150, I = J + 1, N IX = IX + INCX TEMP = TEMP + A( I, J )*X( IX ) 150 CONTINUE X( JX ) = TEMP JX = JX + INCX 160 CONTINUE END IF END IF END IF ! RETURN ! ! End of DTRMV . ! END SUBROUTINE DTRMV