
NCEP Central Operations
WCOSS Implementation Standards

January 19, 2022

Version 11.0.0

Change logs can be found at

http://www.nco.ncep.noaa.gov/idsb/implementation_standards

http://www.nco.ncep.noaa.gov/idsb/implementation_standards

NCO WCOSS Implementation Standards v11.0.0 Last updated: January 19, 2022

I. Introduction 3

II. Workflow 3

III. Standard Variables, Formats, and Utilities 4

A. Standard Environment Variables 4

B. File Name Conventions 5

C. Production Utilities 6

D. Date Utilities 8

E. GRIB Utilities 10

IV. Standards 11

A. General Application Standards 11

B. Compiled Code (C or FORTRAN source) 12

C. Interpreted Code (bash, ksh or perl scripts) 13

I. Dataflow 14

II. Code Delivery and Vertical Structure 15

A. Source Code Compilation (C or FORTRAN) 15

B. Directory Structures 16

C. Unresolved Bugs 17

Appendix A: Workflow Examples 17

Appendix B: Variables and Directory Structure Tables 23

2

NCO WCOSS Implementation Standards v11.0.0 Last updated: January 19, 2022

I. Introduction

The reliable production and availability of the National Center for Environmental Prediction's (NCEP)

guidance products plays a critical role in the mission of the National Weather Service to provide forecasts

and warnings “for the protection of life and property and the enhancement of the national economy.”

This document outlines policies and technical standards that must be met in order to implement

operational code or numerical models in the production suite running on the Weather & Climate

Operational Supercomputing System (WCOSS) and maintained by NCEP Central Operations’ (NCO)

Implementation and Data Services Branch (IDSB). WCOSS is currently composed of a GDIT managed

Cray-EX cluster located in Manassas, VA and Phoenix, AZ. The coding standards, examples of

operational-quality scripts and code, and best practices presented have been established to enable

operational stability, efficient troubleshooting and improved Environmental Equivalence (EE) between

environments within NCO and between NCO and developing organizations.

II. Workflow

In the production environment, all jobs are scheduled and submitted to the WCOSS resource manager,

PBS Pro, by ecFlow. EcFlow is a workflow manager developed and maintained by the European Centre

for Medium-Range Weather Forecasts (ECMWF) with an intuitive GUI that is used to handle

dependencies, schedule jobs, and monitor the production suite. Each job in ecFlow is associated with an

ecFlow script which gets processed to generate a job card (a.k.a. submission script) whose function is to

set PBS (job scheduler) directives and much of the execution environment (see Section III-A) and call the

J-job to execute processing. The processing of the ecFlow script handles the substitution of ecFlow

variables and files accessed via "%include" statements; the resulting job card is then handed off to PBS

Pro via qsub.

The purpose of the J-job is fourfold: to set up location (application/data directory) variables, to set up

temporal (date/cycle) variables, to initialize the data and working directories, and to call the ex-script.

The ex-script is the driver for the bulk of the application, including data-staging in the working directory,

setting up any model-specific variables, moving data to long-term storage, sending products off WCOSS

via DBNet and performing appropriate validation and error checking. It may call one or more ush (a.k.a.

utility) scripts. Additional discussion and examples of the workflow can be found in Appendix A.

All variables relating to the environment in which a job will run must be set, depending on the variable,

within the job card or the J-job. To move a model from development to production, it must only be

necessary to change the variables exported in the job cards. Downstream scripts must always use the

variables established in the J-job and must never alter them.

3

NCO WCOSS Implementation Standards v11.0.0 Last updated: January 19, 2022

III. Standard Variables, Formats, and Utilities

A. Standard Environment Variables
A standard set of environment variables has been established to simplify the production workflow and

improve the troubleshooting process. Table 1 delineates standard environment variables and where

they are typically set in the production workflow. They must be used wherever appropriate. In the

production environment, the variables with “job card” under “Where Set” in Table 1 are defined in the

job card generated by ecFlow. Several are set by loading the prod_envir module. Developers should

likewise have a job card for each job which loads any required modules and sets these variables to the

correct values prior to calling the J-job. Variables that are not used in a given job need not be defined

(keep the J-job clutter-free!).

Table 1: A list of the standard environment variables

Variable Name Description Where Set
envir Set to “test” during the initial testing phase, “para” when running in

parallel (on a schedule), and “prod” in production.
job card

PACKAGEROOT Root directory for the application, e.g. $OPSROOT/packages job card
OPSROOT Operations root directory, e.g. /lfs/$FS/ops/$envir job card
job Unique job name (unique per cycle) job card
jobid Unique job identifier, typically $job.$PBS_JOBID job card
NET Model name (first level of com directory structure) J-job
RUN Name of model run (third level of com directory structure) J-job
PDY Date in YYYYMMDD format J-job
PDYm# Dates of a previous day in YYYYMMDD format ($PDYm1 is

yesterday’s date, i.e. “present day minus 1”, etc.)
J-job

PDYp# Dates of a future day in YYYYMMDD format ($PDYp1 is tomorrow’s
date, i.e. “present day plus 1”, etc.)

J-job

cyc Cycle time in GMT hours, formatted HH job card
cycle Cycle time in GMT, formatted tHHz or tHHMMz J-job
subcyc Cycle time in GMT minutes, formatted MM job card
DATAROOT Directory containing the working directory, typically $OPSROOT/tmp

in production
job card

DATA Location of the job working directory, typically
$DATAROOT/$jobid

J-job

4

NCO WCOSS Implementation Standards v11.0.0 Last updated: January 19, 2022

HOMEmodel Application home directory, typically
$PACKAGEROOT/model.vX.Y.Z

job card

USHmodel Location of the model’s ush files, typically $HOMEmodel/ush J-job
EXECmodel Location of the model’s exec files, typically $HOMEmodel/exec J-job

PARMmodel Location of the model’s parm files, typically $HOMEmodel/parm J-job
FIXmodel Location of the model’s fix files, typically $HOMEmodel/fix J-job
COMROOT com root directory for input/output data on current system,

typically $OPSROOT/com
job card

COMIN com directory for current model's input data, typically
$COMROOT/$NET/$model_ver/$RUN.$PDY

J-job

COMOUT com directory for current model's output data, typically
$COMROOT/$NET/$model_ver/$RUN.$PDY

J-job

COMINmodel com directory for incoming data from model model J-job
COMOUTmodel com directory for outgoing data for model model J-job
DCOMROOT dcom root directory, typically $OPSROOT/dcom job card
DCOMIN dcom directory for current model's input data J-job
DCOMINdatatype dcom directory for incoming data from datatype datatype J-job
DBNROOT Root directory for the data-alerting utilities job card
SENDECF Boolean† variable used to control ecflow_client child commands job card
SENDDBN Boolean† variable used to control sending products off WCOSS2 job card
SENDDBN_NTC Boolean† variable used to control sending products with WMO

headers off WCOSS2
job card

SENDCOM Boolean† variable to control data copies to $COMOUT job card
SENDWEB Boolean† variable used to control sending products to a web server,

often ncorzdm
job card

model_ver version number of package in three digits; where package is the
model's directory name

job card

module_ver Version of module module which is used at runtime by model model version file
extmodel_ver version of external model dependencies; specified with two digit

version number
version file

KEEPDATA Boolean† variable used to specify whether or not the working
directory should be kept upon successful job completion.

job card

MAILTO List of email addresses to send email to job card
MAILCC List of email addresses to cc on email job card
†boolean variables are set to “YES” or “NO” (all caps)

B. File Name Conventions
Standard file naming conventions must also be used. File names must not contain special characters,

uppercase characters or the date (the directory in which the file resides will contain the date). File

names must indicate the name of the model run, the cycle, the type of data the file contains, the

resolution of the data (if applicable), other data related elements, the three-digit forecast hour the data

represents (if applicable), and the file type. Please adhere to the following:

For all model types:

5

NCO WCOSS Implementation Standards v11.0.0 Last updated: January 19, 2022

1. Use periods to separate categories and use underscores to separate words within the same

category

2. Use a “p” in describing a “point” within a grid resolution. Ex. 0.25 = 0p25

3. Use a leading 0 in describing a grid resolution that is less than 1.

4. Include an “f” in front of the forecast hour

5. Pad forecast hours with zeros so that all files have the same number of digits

6. In cases where there is no forecast hour, but rather it is output that is before the cycle time, “tm”

may be substituted for “f” in the filename.

7. domain does not need to be included in the filename if there is only one domain used by the

model

8. ASCII inventory files (output of wgrib/wgrib2) should end with the extension “.grib2.idx”. Ex.

hrrr.t10z.wrfnatf01.grib2.idx

9. Other index files (in binary format) should end with the extension “.bin.idx”

10. If var_info includes multiple pieces of information, they should be separated with a period. This

includes resolution if there are multiple resolutions produced. Ex.

gefs.t06z.avg.pres_a.0p50.f006.grib2, etss.t00z.stormsurge.2p5km.conus.grib2

11. Output file names must be consistent across environments and application versions, so variables

such as $job, $envir, and $model_ver must not be used to define file names.

12. Public products can be produced in any of the following formats: netcdf, bufr, grib2, ascii

13. If the directory structure includes the cycle, it should be a subdirectory.

<model>.YYYYMMDD/HH/

For coupled models in particular:

14. Output directory structure should have subdirectories for each model component Ex.

gefs.YYYYMMDD/HH/atmos/

Filename format for files in com:

non-ensemble: atmospheric, hydro models: model.tHHz.var_info.f###.domain.format

ensemble: atmospheric, hydro models: model.tHHz.ens_mem.var_info.f###.domain.format

non-ensemble: coupled models: model.component.tHHz.var_info.f###.domain.format

ensemble: coupled models: model.component.tHHz.ens_mem.var_info.f###.domain.format

hurricane models: model.tHHz.storm_name.var_info.f###.domain.format

space weather models: model.var_info.valid_time.domain.format

Example filenames for files in com (HH is the cycle/hour):

rtofs_glo.tHHz.std.f180.west_conus.grib2

aqm.tHHz.8hr_o3.227.grib2 (227 is the domain in this case)

6

NCO WCOSS Implementation Standards v11.0.0 Last updated: January 19, 2022

sref.tHHz.pgrb216.p10_3hrly.grib2.idx → sref.tHHz.p10.pres_3hrly.216.grib2.idx

gefs.chem.tHHz.a2d_0p25.f###.grib2 → gefs.chem.tHHz.a2d.0p25.f###.grib2

Filename format for files in the wmo sub-directory:

format.model.tHHz.awp_var_info.f###.domain

Example filenames for files in the wmo sub-directory:

grib2.aqm.tHHz.08hr_o3.227

grib2.akrtma.tHHz.2dvaranl.198

grib2.sref.tHHz.spread.212

C. Production Utilities
The utilities listed below must be used to assist in accomplishing certain tasks for all WCOSS models.

They are accessible through the prod_util module. This module will put the below utility scripts in your

environment’s PATH and define other useful environment variables. The module is automatically loaded

in all production jobs and should be loaded in development job cards. See Appendix A for examples of

these utilities in use.

prep_step
prep_step unsets the FORT## variables used to pass unit assignments to Intel FORTRAN executables.

Since there may be multiple FORTRAN programs running in a job, these variables must be reset before each

program execution.

startmsg *
startmsg posts the start time of a program to stdout.

postmsg *
postmsg writes a message to a log file. The first argument is the log file name and the second is the

message. The log file will default to stdout.

*startmsg and postmsg are no longer required in operations but the utilities will continue to be

maintained.

err_chk/err_exit
It is imperative that all production code and scripts broadly employ error checking to catch and recover

from errors as quickly as possible. The context of the error must be communicated as descriptively as

possible and prefaced with “WARNING:” or “FATAL ERROR:”. Failures must not be allowed to propagate

downstream of the point where the problem can first be detected; jobs should fail with err_chk or

err_exit as soon as a fatal error is encountered.

7

NCO WCOSS Implementation Standards v11.0.0 Last updated: January 19, 2022

err_chk is used to check and handle the $err variable which has been set to a program’s return code

and exported into the environment. If $err=0, err_chk does nothing and job execution continues. If

$err is non-zero, the job is aborted.

err_exit will write an error message with the time of the error, and immediately abort the job in PBS

Pro. It accepts an error string as input to which it will prepend “FATAL ERROR.”

cpreq
cpreq is used to copy files that are essential to an application. If the copy is unsuccessful for any reason,

then a FATAL ERROR will be printed and the job will abort immediately. It has the same usage as the

standard cp command.

cpfs
cpfs is used to copy files while ensuring that the whole file has been copied before it becomes

accessible so that downstream applications will not attempt to copy or read a partial file. It has the same

usage as the standard cp command with the limitation that it may only copy one file at a time (no

globbing). It is most useful for copies across file systems or for very large files.

cpfs $COMIN/$file $new_file
will execute the following:

cpreq $COMIN/$file $new_file.cptmp
$FSYNC $new_file.cptmp
mv $new_file.cptmp $new_file

cpfs calls the err_exit utility if either the cp or mv step returns non-zero status. However, as a further

check, verify that a source file exists before calling cpfs. If the job should continue without the file, skip

the cpfs call and continue. If the job should fail if the source file does not exist, call err_exit directly.

compath.py
The compath.py utility is used to discover the current absolute path of a given com directory and is

used to set COMIN and COMOUT variables in J-jobs. compath.py accepts the relative path of the

directory you wish to use data from as an argument; the corresponding absolute path is returned:

COMIN=${COMIN:-$(compath.py $envir/$NET/$model_ver/$RUN.$PDY)}

COMINm1=${COMINm1:-$(compath.py $envir/$NET/$model_ver/$RUN.$PDYm1)}

COMINgfs=${COMINgfs:-$(compath.py $envir/gfs/$gfs_ver/gfs.$PDY)}

COMOUT=${COMOUT:-$(compath.py -o $NET/$model_ver/$RUN.$PDY)}Run 'compath.py --help'

to see all usage options. To use non-production data, in the job card set the $COMPATH environment

variable to a list of absolute paths. compath.py will search those paths for a match before defaulting to

production data.

export COMPATH="$COMROOT/nco:/dev/noscrub/First.Last/prod/com/gfs"

8

NCO WCOSS Implementation Standards v11.0.0 Last updated: January 19, 2022

mail.py
When nonfatal errors occur that may impact the quality of the model output, such as when backup data

is used, it is important to notify the appropriate parties so that the error can be addressed. The

mail.py utility is used to send an e-mail notification from any node on the system. To notify

production staff of a nonfatal but significant issue with a production job, one might execute:

msg="WARNING: Primary data source unavailable. Backup data is being
used."
echo "$msg" | mail.py

An addressee list can be included on the command line or set in advance via environment variable

$MAILTO. To copy someone, use the “-c” flag:

echo "$msg" | mail.py –c <someones_email_address>

Run “mail.py -h” after loading the prod_util module to see additional options. Note that e-mail is

only sent in jobs run by NCO. Jobs run by others will merely print the message to stdout.

getsystem
getsystem simply tells you which WCOSS system you are on. This utility exists for command line

execution and must not be used in any operational packages. Table 2 shows what you can expect to

receive when running this utility on a given system with a given set of option flags:

Table 2: getsystem output

System no flags –p
Dogwood phase 1 Dogwood Dogwood-p1
Cactus phase 1 Cactus Cactus-p1

D. Date Utilities
The following utilities are used to manage dates in the production suite. They must be used wherever

current dates are employed to enable proper scheduling and ensure that all jobs work as expected when

crossing over to a new year. The following date utilities are accessed by loading the prod_util module.

finddate.sh
Given a date, finddate.sh will return a date (in YYYYMMDD format) a specified number of days before

or after the given date. It may also provide a sequence of dates leading to the specified number of days

before or after the given date. Example 1 shows how to use finddate.sh. Example 1: Using
finddate.sh

Script
#!/bin/sh
module load prod_util/$prod_util_ver

PDY=20220101

Single date example
ten_days_ago=$(finddate.sh $PDY d-10)
ten_days_ahead=$(finddate.sh $PDY d+10)

9

NCO WCOSS Implementation Standards v11.0.0 Last updated: January 19, 2022

Sequence example
last_four_days=$(finddate.sh $PDY s-4)
next_four_days=$(finddate.sh $PDY s+4)

echo "Today's date is $PDY"
echo "The date ten days ago was $ten_days_ago"
echo "The date in ten days will be $ten_days_ahead"
echo "The last four days were $last_four_days"
echo "The next four days are $next_four_days"

Output
Today's date is 20200101
The date ten days ago was 20211222
The date in ten days will be 20220111
The last four days were 20211231 20211230 20211229 20211228
The next four days are 20220102 20220103 20220104 20220105

ndate
ndate is accessible by the variable $NDATE once the prod_util module has been loaded. ndate is a date

utility that will return a date in YYYYMMDDHH format. Given no arguments, it will return the current

date/hour. ndate takes up to two arguments, namely fhour and idate:

ndate [fhour [idate]]

fhour is a forecast hour (may be negative) and defaults to zero. idate is the initial date in

YYYYMMDDHH format and defaults to the current date. Example 2 shows how to use ndate.

Example 2: Using ndate

Script
#!/bin/sh
module load prod_util/$prod_util_ver

PDYHH=$($NDATE)

Single date example
ten_days_ago=$($NDATE -240 $PDYHH)
ten_days_ahead=$($NDATE 240 $PDYHH)

cycle examples
next_cycle=$($NDATE 06 $PDYHH)
prev_cycle=$($NDATE -06 $PDYHH)

echo "Today's date and cycle is $PDYHH"
echo "The date ten days ago was $ten_days_ago"
echo "The date in ten days will be $ten_days_ahead"
echo "Six hours from now will be $next_cycle"

10

NCO WCOSS Implementation Standards v11.0.0 Last updated: January 19, 2022

echo "Six hours ago was $prev_cycle"
Output
Today's date and cycle is 2022010112
The date ten days ago was 2021122212
The date in ten days will be 2022011112
Six hours from now will be 2022010118
Six hours ago was 2022010106

setpdy.sh
setpdy.sh creates a file PDY that is sourced to export the standard date variables PDYmnm,
PDYm{nm-1}, PDYm{nm-2}, …, PDYm2, PDYm1, PDY, PDYp1, PDYp2, …, PDYp{np-2}, PDYp{np-1},

PDYpnp. By default, nm and np are 7 but can be altered by providing alternate numbers as input

parameters. The variable cycle must be set (in ‘tHHz’ format) prior to execution. The default date is

the current day’s date as defined in the file $COMDATEROOT/date/$cycle, but it can be overridden by

setting the variable PDY prior to execution. The date files in $COMDATEROOT/date are set at 11:30 UTC

and 23:30 UTC. At 23:30, the date files for cycles 00–11 are incremented to the next day. At 11:30, the

date files for cycles 12–23 are likewise advanced. Therefore, if you were to set cycle to t12z and run

setpdy.sh between 00:00 and 11:30, you would get a PDY file centered on the previous day’s date

(unless variable PDY was imported) Example 3 shows how to use setpdy.sh.

Example 3: Using setpdy.sh (assuming current date is 20160101)

Script
#!/bin/sh
module load prod_util/$prod_util_ver
export cycle=t12z

setpdy.sh 8 3
. ./PDY

echo "Yesterday's date was $PDYm1"

Contents of file PDY
export PDYm8=20151224
export PDYm7=20151225
export PDYm6=20151226
export PDYm5=20151227
export PDYm4=20151228
export PDYm3=20151229
export PDYm2=20151230
export PDYm1=20151231
export PDY=20160101
export PDYp1=20160102
export PDYp2=20160103
export PDYp3=20160104

Output
Yesterday's date was 20151231

11

NCO WCOSS Implementation Standards v11.0.0 Last updated: January 19, 2022

E. GRIB Utilities
GRIB is a data format commonly used across the production model suite at NCEP and in Numerical

Weather Prediction worldwide. NCO supports several utilities responsible for manipulating GRIB data.

These utilities are accessible in production via the grib_util and wgrib2 modules. The module will define

numerous environment variables. See Table 6 (in Appendix B) for all variable definitions and descriptions

of each utility. The module must be loaded in the job cards of jobs using GRIB utilities:

module load grib_util/$grib_util_ver
module load wgrib2/$wgrib2_ver

IV. Standards

A. General Application Standards
Diagnosing failures quickly is a necessary component of maintaining a suite of products that boasts a

greater than 99% on-time delivery rate. To that end, all code must be scrutinized for both stability

and ease of troubleshooting and recovery. It is not practical to discuss all of the steps that can or

should be taken to write operational-quality code, but here are some things that should be

considered:

i. Notification of use of backup data

For scripts that have a secondary data source to be used when the primary data is not available,

the script must include a message that indicates the primary data is not available and backup

data is being used. If continued use of backup data will result in a degraded product, the

developer should work with NCO’s SPA team to include code to notify the appropriate parties

when primary data is unavailable. The mail.py utility can be useful in this regard.

ii. Data of opportunity

It is acceptable to use data from a server or other source that is not supported 24/7. However,

the application cannot fail when this data is missing. Appropriate notification must be logged

indicating that the job is continuing without this data source (similar to use of backup data

above).

iii. Descriptive error messages

Fatal errors must print a descriptive message beginning with “FATAL ERROR:”. Warnings or

non-fatal error messages must be prefaced with “WARNING:”. As with executable code, error

messages in scripts must be written so that if an issue arises, the context of that error or failure

is communicated as early and as clearly as possible.

iv. Appropriate modes of failure

An executable must not terminate abnormally with a segmentation or memory fault for errors

that are discoverable/trappable. For example, lack of input data must be handled either in the

script before the executable runs, or by the executable if checking in the script is not practical.

All scripts that depend on the existence of a certain type of input or restart data to successfully

run must check for the existence of such data before running and report an informative fatal

error if the needed data is missing.

12

NCO WCOSS Implementation Standards v11.0.0 Last updated: January 19, 2022

v. Recovery from code failure or abnormal system failure

Restart capability must be applied to an operational job to save time when recovering from a

failure. Long running jobs that have multiple executable calls might be a good candidate to break

into two smaller jobs so that if a failure occurs, only the part with the problem needs to be

rerun, thus the time to completion is shorter. An example of this would be to submit a separate

post-processing job for each forecast hour, so any failure for one forecast hour does not impact

others, and can be recovered from quickly. Any job that runs longer than 15 minutes is required

to have restart capability built in such that the process picks up where it left off when rerun.

For a forecast job, this would involve writing out checkpoint or restart files at fixed intervals

during the forecast, from which the model can be restarted.

The job scripts must be designed so this restart will happen automatically if the job is rerun.

Any products delivered by a restarted production job must not be delayed by more than 15

minutes. Data assimilation jobs are exempt from this requirement, but steps should be taken to

minimize runtimes and enhance re-runnability of these processes.

vi. No background processing

PBS Pro loses control of processes when they are put in the background. Therefore, background

processing must be avoided. Killing a PBS Pro job must terminate all processes running under it.

vii. No external-pointing symlinks

Symbolic links to resources outside of the application directory or package (e.g. links to absolute

paths) are not allowed within the package. When external resources are required, their paths

must be obtained from production module variables (when available) or defined as variables in

the version file and ecf script and used wherever the external resource is needed.

viii. Working directories

Working directories must contain a unique identifier (job id) unless there is an application need

to share the directory across multiple jobs (e.g. a forecast job writing output that is needed by a

post job running in parallel). Working directories must be removed upon successful completion

of the run. All data that is needed for longer than one cycle must be copied to $COMOUT. MPMD

child processes must do their work in separate subdirectories of the main working directory to

avoid cases where multiple processes might create/modify/remove the same file simultaneously.

ix. Text formatting

All text files (scripts, source code, config files, etc.), as well as standard output for all jobs/scripts,

must only use the basic ASCII character set, with no Windows-format carriage returns, stylized

quotation marks, or other non-standard characters.

x. Documentation Blocks

Source code and scripts must be annotated with information that may help staff remedy a

problem if something goes awry. In some cases, too much information is as bad as none at all.

We ask that you use your best judgment to include information that will be of the most help in

troubleshooting potential issues. Example 4 shows a suggested format for a documentation

block (DOCBLOCK).

xi. Points of contact

All applications running in production must have a primary and backup support contact

reachable 24/7 in case of operational failures.

13

NCO WCOSS Implementation Standards v11.0.0 Last updated: January 19, 2022

xii. Cold starts

All jobs that depend on restart data from previous runs must include a cold restart option. Cold

start is the ability to run using the current inputs and observations without any data from

previous runs. The cold start option must be activated by the addition of “export

COLDSTART=YES” in the job card

xiii. Removal of dead code

After initial coding updates/debugging efforts, executable statements that are made inert by

commenting must be removed. Rely on configuration management software for content

differentials.

Example 4: DOCBLOCK template*

Program Name:
Author(s)/Contact(s):
Abstract:
History Log:
<brief list of changes to this source file>
#
Usage:
Parameters: <Specify typical arguments passed>
Input Files:
<list file names and briefly describe the data they include>
Output Files:
<list file names and briefly describe the information they include>
#
Condition codes:
< list exit condition or error codes returned >
If appropriate, descriptive troubleshooting instructions or
likely causes for failures could be mentioned here with the
appropriate error code
#
User controllable options: <if applicable>

* Use appropriate comment indicator (#, !, or //) where appropriate.

B. Compiled Code (C or FORTRAN source)
1. Compiled code must be written in either C/C++ or FORTRAN.

2. C and FORTRAN compilers must be the latest available version of the Intel or Cray (cc, CC, and

ftn) compiler collections.

3. All libraries must be approved for production use. Approved libraries are found by running

“module avail” in a default environment. Hidden modules are not allowed to be used in

production. Makefiles must only include compilers and libraries using variables defined in

modules:

Within the build script or build module in the parent sorc directory:

module load cpe-cray
module load intel/$intel_ver

14

NCO WCOSS Implementation Standards v11.0.0 Last updated: January 19, 2022

module load w3nco/$w3nco_ver

Within the makefile:

LIBS = ${W3NCO_LIB4}
ndate: ndate.f

$FC –o ndate ndate.f $(LIBS)

A build modulefile must be provided for all builds. See Example 11, Example 12, and Example 13

in Appendix A for an example build script, modulefile, and makefile, respectively.

4. Do not specify absolute paths to executables, libraries, or any other products inside the source

code or build system. If a module file does not provide a certain desired variable, the necessary

value should be derived from the module file's contents programmatically as opposed to

hardcoded (e.g., when using bufr module, use "$BUFR_INC4/bufrlib.h" not

"/lfs/h1/ops/prod/libs/intel/19.1.1.217/bufr/11.4.0/include_d/bufrlib.h"). This way, if a module

version is upgraded, no further modifications will be necessary for the code to compile and run

with the appropriate libraries and executables.

5. Code must compile without errors or warnings. Errors and warnings may not be suppressed, and

the compiler warning level ("-W" options) must be at least the default one.

6. Errors must be caught as early as possible and the context of the error must be communicated

clearly. Failures must not be allowed to propagate past the point where the problem is first

detectable. “Missing GFS data” is not an adequate error message. Indicate the specific GFS file

and directory that is missing in the error message.

7. Input/output errors must be handled gracefully. See available I/O control options to trap errors

and add logic to allow the code to continue or fail as appropriate.

8. When an executable aborts, has other problems, or needs to be tested, it is vitally important to

know which disk files it uses for input and output. To accomplish this, the following is required:

a) Paths of files outside a job's working directory (e.g., input data from COMIN or DCOM) must

not be hard-coded in the source code, but rather defined in the calling script. This can be done
in one of the following ways:

● By using FILE=var option in the OPEN statement, where var is a character variable; the
variable value must be exported to the shell environment before calling the executable and
retrieved from the environment by either the routine GETENV (Fortran extension, requires
"use IFPORT" in ifort) or the Fortran-2003 standard intrinsic GET_ENVIRONMENT_VARIABLE.

● (An ifort extension) by omitting the FILE= option, in which case the file name must be set by
exporting the value of the character FORTn variable, where n is the Fortran I/O unit number
as set in the OPEN statement. For ifort, n is any positive integer fitting in a 4-byte variable.
The production utility "prep_step" (clearing the values of all FORTn variables) must be called
before each executable if this method is used.

● By omitting the FILE=var option, and not setting the FORTn variable, in which case the
default file name “fort.n” will be used by the executable. This method is allowed only if this
file is a symbolic link, eg: ln -sf $DATA/pgrbf01 fort.11.

15

NCO WCOSS Implementation Standards v11.0.0 Last updated: January 19, 2022

b) It must be clear, by looking at the file names defined before calling the executable, which files
are read from (input), written to (output), and which are both read and written within the same
executable (work files). It can be ensured by one of the following:

● Using numbers 11-49 for input, 51-79 for output, 80-94 for work files (preferred method for
executables opening a small number of files).

● Exporting separately the three groups of file names with appropriate headers / comments at
the top of each block.

9. Good programming practices must be followed to improve readability. For example, structured

control must be used instead of GO TO statements, and code must be well documented.

10. Executables should be built with production compilation settings and tested for and ridded of

memory leaks/allocation problems with, e.g., valgrind4hpc

C. Interpreted Code (bash, ksh, perl, or python scripts)
Each “job” is associated with a single J-job, located in the jobs subdirectory. The J-job sets up the

environment and calls an ex-script script located in the scripts subdirectory. All J-jobs must follow the

naming convention JAAAAA: all capital letters beginning with the letter ‘J’ with no extension. J-jobs must

use Bash (/bin/bash or /bin/sh, the latter invokes Bash in POSIX mode on WCOSS) or Korn Shell

(/bin/ksh). Ex-scripts and utility scripts must be written in Bash, Korn shell, Perl, or Python. Ex-scripts

must follow the naming convention exaaaaa.sh: all lowercase beginning with the letters ‘ex’ and ending

with the appropriate extension (‘.sh’, ‘.pl’, ‘.py’). Any sub-scripts to the ex-script will be located in the ush

subdirectory, be named in all lowercase letters not beginning with the letters ‘ex,’ and must end with the

appropriate extension. Underscores are permitted in all file names.

Please also observe the following points:

1. Enable debug logging at the top of each shell script:

set -x

and add timing info to the execution trace by including the following in the J-job:

export PS4='+ $SECONDS + '
2. setpdy.sh must be called after cd to the working directory ($DATA)

3. Utilize standard environment variables and utilities (See Section III).

4. Each block of dbnet alerts must be wrapped with logic testing whether the variable $SENDDBN
or $SENDDBN_NTC, as applicable, is set to “YES”.

5. Each execution of a C or FORTRAN code must be wrapped with the production utilities prep_step,

if applicable, and err_chk.

6. Any executions that print verbose output (more than 100 lines or so per execution) must redirect

standard output and standard error to a file under $DATA, for example:

$EXECmodel/$pgm >> $pgmout 2> errfile

7. Production utilizes a centralized cleanup of directories in COMROOT. Production scripts must not

remove directories at the $COMROOT/$NET/$ver/$RUN.$PDY level. Output must conform to the

output structure of $COMROOT/$NET/$ver/$RUN.$PDY.

16

NCO WCOSS Implementation Standards v11.0.0 Last updated: January 19, 2022

8. Do not assume that the current directory (“.”) will be in the execution path ($PATH). (Invoke

temporary script as $DATA/scriptx or ./scriptx).

9. Model scripts and executables should be called explicitly, eg, $USHmodel/scriptx. ($USHmodel

and $EXECmodel should not be added to $PATH).

10. Remove all references to developer work areas and all development tools (benchmarking, etc.)

before submitting to IDSB.

11. If your application should continue if a preceding step fails, it must be documented in a

comment in the script just before (or after) the relevant part is called and a descriptive

“WARNING:” message printed to stdout.

12. Never write to dcom! Unless you run data ingest from an outside source.

13. Ensure that files containing restricted data are assigned the appropriate group and permissions.

14. There must be no false/misleading errors and no syntax errors in the standard output/error file.

15. Ensure all non-zero stops, aborts, calls to err_exit, etc are for good reason. (Eg, consider

whether a bad observation should be skipped rather than causing the job to fail).

16. The interpreter must be added to the top of all shell scripts with a "#!" statement.

17. Shell scripts must be invoked directly (eg, “<path_to_script>”, not “sh <path_to_script>“).

18. All packages that use Python scripts must specify a Python version through the module system,

and must only call a Python executable that is from a module, not the system version.

"module load python/${python_ver:?}" or similar must be present in all job files that will lead to

python script calls, where the python version is defined in the version file. Python version must

be at version 3 or higher.

Reference Appendix A for commented examples of a version file, ecFlow script, J-job, ex-script,

modulefile and makefile.

V. Dataflow

Distributed Brokered Networking (DBNet) is used to disseminate products operationally from

WCOSS. DBNet is a series of server/client daemons that are controlled by table and key relationships.

To disseminate a product, jobs running on WCOSS make a call to the dbn_alert executable which makes

the DBNet software aware of the new product. Then, based on entries in several different tables, the

product can be sent to one or more external servers. The NCO Dataflow Team is responsible

for maintaining DBNet. Any alert that is new or changing needs to be coordinated with the Dataflow

Team so that the product will continue to go to all of the external customers specified in the governing

tables. All DBNet alerts must be wrapped in a check for $SENDDBN (or $SENDDBN_NTC) equal to “YES”.

$DBNROOT/bin/dbn_alert MODEL PMB_GB2 $job $COMOUT/$outputfile

Field Description

Type [MODEL] Generic data type

Subtype [PMB_GB2] Specific data type under the generic type

17

NCO WCOSS Implementation Standards v11.0.0 Last updated: January 19, 2022

Job Name [$job] Name of the process that alerted the file, this is only
used in the log output. It can be helpful when trying to
identify the job that called dbn_alert

File [$COMOUT/$outputfile] File to be alerted; must include the full path.

VI.Code Delivery and Vertical Structure

All components of an application to be run in the NCO production environment must be delivered to

IDSB's Senior Production Analysts (SPA) via subversion, git or any other version control system that

WCOSS has access to. When modifying an application that is already in production, always begin with

the most recent production version at https://svnwcoss.ncep.noaa.gov/MODEL/tags/.

A. Source Code Compilation (C or FORTRAN)
1. The directory structure, compilation scripts, makefiles, and documentation for building must be

understandable to someone unfamiliar with the specifics of your model.

2. Do not deliver pre-built executables or libraries to IDSB. It is the SPA's responsibility to build all

code before it is run in production.

3. If more than one executable is to be built, divide the source files into sub-directories according

to the executable they produce. The only exception is if multiple executables share a large

portion of their code base in which case sub-directory sharing is allowed. The name of each

source directory must be the name of the executable it produces plus the appropriate extension

(.cd or .fd for C or FORTRAN code, respectively). If multiple executables are produced then their

names must resemble the base source directory name.

4. All source code must be delivered with a build script, and optionally a module file, used to set up

the build environment. It must define the compiler and its version (by loading the appropriate

versioned compiler), specific library versions, and all other external files used to compile the

application. An example modulefile can be found in Example 12 of Appendix A. Creating

symbolic links to external resources (e.g. to absolute paths) is not allowed. The modulefile or

script must not reference unused software.

5. WCOSS uses the Lmod environmental module system, therefore all module files must be in

Lmod/Lua format

6. Each source code directory must have a makefile that does everything needed to build the

executable. For example, global_fcst.fd would contain FORTRAN code and a makefile to produce

the global_fcst executable. The basic ‘make’ command must not move the compiled binary;

however, ‘make install’ may do so. The makefile must not include references to unused

libraries. Example 13 of Appendix A contains an example. See Environment Equivalence (EE)

standards for more details about builds

7. The resulting executable(s) must continue to work if the original build path is removed or

renamed (eg, when moving the package from ops/para to ops/prod).

8. There are four critical targets that must be defined in every makefile. They are all, debug, install,

and clean. Additionally, a test target is required to run unit tests for libraries and utility

programs. Example 13 of Appendix A contains an example of each.

18

https://svnwcoss.ncep.noaa.gov/MODEL/trunk/

NCO WCOSS Implementation Standards v11.0.0 Last updated: January 19, 2022

a. The debug target must minimally contain the check all and ftrapuv flags in fortran or

their equivalent in other accepted languages

9. Use a readme file in the source directory to explain the build process, particularly if it requires

any interaction or if it is non-standard in any way; for example, in situations where a makefile

produces more than one executable. Clear, concise instructions (see Example 10 in Appendix A)

will reduce confusion and errors if it becomes necessary to rebuild the executable quickly.

B. Directory Structures
All components of an application to be implemented into the production environment are required to be

in vertical structure, where, with the exception of system or standard production libraries and input data,

all of the files required to completely build and run the jobs are contained in an application-specific

package. The package must contain all J-jobs and ex-scripts specific to the model and must be named

with the following format: model.vX.Y.Z (e.g. gfs.v12.0.1). Files must be organized into sub-directories

according to their type (see Table 3). If there exists code, scripts or other files shared between multiple

models then they must reside in a separate shared package (e.g. model_shared.v5.0.0). Shared packages

must not contain J-jobs or a jobs sub-directory. Shared packages must be backward compatible.

Table 3: Package Sub-directories

Subdirectory Description
doc release notes or other documentation
jobs J-jobs
scripts ex-scripts
ush utility scripts (ush-scripts)
sorc source code that can be compiled
exec binary executables
parm parameter files
parm/wmo Specific subdirectory under ./parm for WMO GRIB

headers
fix fixed fields, tables or other static input data
lib model-specific libraries
ecf ecFlow scripts and definition files
gempak all gempak-related files
versions contains run.ver and build.ver, which are files that

get automatically sourced in order to track
package versions at run time and compile time,
respectively (e.g., "export bufr_ver=11.4.0; export
gempak_ver=7.3.3"; export lmp_ver=v2.4.0. The
“v” is excluded for module versions).

modulefiles/ model module files

Table 4 lists the primary data and application directories used within the WCOSS NCO production

environment. These directories can be located using the variables defined in the prod_envir module (see

Example 7 in Appendix A).

19

NCO WCOSS Implementation Standards v11.0.0 Last updated: January 19, 2022

Table 4: WCOSS directory structure

Directory Description
prod applications/packages in the production suite
test applications/packages in the test suite (unscheduled)
para applications/packages in the parallel suite (scheduled)
${envir}/com data and application output, including outgoing products
${envir}/dcom incoming data (retrieved from outside WCOSS)

${envir}/brs backup of production packages
${envir}/tmp temporary working directories for running jobs

Data from external sources is stored in dcom and model output is stored in com. The output folder of

the com directory contains PBS Pro job stdout and stderr. World Meteorological Organization (WMO)

headed output products are placed in a model's com structure under a wmo subdirectory. Model output

products in GEMPAK format (grids, model vertical profiles) are placed in the model's com structure

under a gempak subdirectory. Table 5 (below), Table 7, Table 8, and Table 9 (in Appendix B) show the

structures of com, and dcom directories, respectively.

Table 5: Structure of COM directories

/lfs/h1/ops/ subdirectory Description
prod/com/NET/$ver/RUN.YYYYMMDD production model output for a day
test/com/NET/$ver/RUN.YYYYMMDD test model output for a day
para/com/NET/$ver/RUN.YYYYMMDD parallel model output for a day
prod/com/output/YYYYMMDD production job stdout/stderr for a day
test/com/output/YYYYMMDD test job stdout/stderr for a day
para/com/output/YYYYMMDD parallel job stdout/stderr for a day
prod/com/output/transfer/YYYYMMDD transfer job stdout/stderr for a day
prod/com/output/logs log files

C. Unresolved Bugs
Before handing off code to NCO, all Bugzilla entries must be addressed. Please mark all items that have

been resolved as such and add a brief complete explanation of the resolution, including relevant files

modified to address the bug. The SPA will then verify the fix during testing and close the bug following

implementation. If a bug cannot be resolved, a comment must be added and approval received from the

SPA team lead.

VII. Appendix A: Workflow Examples

All examples are for job jpmb_forecast. Model name is nco and type of model run is pmb.

Example 5: Version file run.ver/build.ver

The version file tracks the versions of all packages and modules used by your application. It must not

reference packages or modules that are not used.

export nco_shared_ver=v1.0.6 set the shared code version

20

NCO WCOSS Implementation Standards v11.0.0 Last updated: January 19, 2022

export grib_util_ver=1.0.1 set the grib_util version

Example 6: Job card jpmb_forecast.ecf

In production, ecFlow preprocesses ecFlow scripts to generate job cards that are submitted to PBS Pro.

On WCOSS, production paths are set by loading the prod_envir module (Example 7). To read or write

files from a development space, point the variables in your job card to the appropriate location(s).

#PBS –N %E%pmb_forecast_00
#PBS -A %PROJ%-%PROJENVIR%
#PBS -q %QUEUE%
#PBS –S /bin/sh
#PBS -l walltime=01:00:00
#PBS -l select=8

export model=pmb
%include <head.h>
%include <envir-p1.h>

export cyc=%CYC%

export MPICH_GNI_MAX_EAGER_MSG_SIZE=65536
export FORT_BUFFERED=TRUE

module load util_shared/$util_shared_ver
module load grib_util/$grib_util_ver

$HOMEpmb/jobs/JPMB_FORECAST

%include <tail.h>

job name
project identifier
PBS Pro queue name
login shell
wall clock

Request 8 nodes

begin ecFlow communication
set up environment

set the cycle

define parallel environment
variables

load only modules need for
this job

call J-job

end ecFlow communication

Note that the envir-phase.h include files set the following environment variables in addition to loading

the prod_envir and prod_util modules:

● job
● SENDDBN

● SENDDBN_NTC
● KEEPDATA

● DBNROOT
● COREROOT

● SENDECF
● SENDCOM

Example 7: prod_envir module

To see what a module will do, run the “module show” or “module display” command.

21

NCO WCOSS Implementation Standards v11.0.0 Last updated: January 19, 2022

$ module display prod_envir

/apps/ops/prod/nco/modulefiles/prod_envir/2.0.3.lua:

setenv("OPSROOT","/lfs/h1/ops/prod")
setenv("OPSROOTssd","/lfs/f1/ops/prod")
setenv("COMROOT","/lfs/h1/ops/prod/com")
setenv("DATAROOT","/lfs/f1/ops/prod/tmp")
setenv("DCOMROOT","/lfs/h1/ops/prod/dcom")
setenv("PACKAGEROOT","/lfs/h1/ops/prod/packages")

Example 8: J-job JPMB_FORECAST
#!/bin/sh

date
export PS4='+ $SECONDS + '
set -x

export DATA=${DATA:-${DATAROOT:?}/${jobid:?}}
mkdir -p $DATA
cd $DATA

export cycle=${cycle:-t${cyc}z}
setpdy.sh
. ./PDY

export SENDDBN=${SENDDBN:-YES}
export SENDDBN_NTC=${SENDDBN_NTC:-YES}
export SENDECF=${SENDECF:-YES}

export USHpmb=$HOMEpmb/ush
export EXECpmb=$HOMEpmb/exec
export PARMpmb=$HOMEpmb/parm
export FIXpmb=$HOMEpmb/fix

export NET=${NET:-nco}
export RUN=${RUN:-pmb}

export COMINgfs=${COMINgfs:-$(compath.py gfs/prod/gfs.$PDY)}
export COMIN=${COMIN:-$(compath.py ${NET}/${envir}/$RUN.$PDY)

export COMOUT=${COMOUT:-$(compath.py -o
${NET}/${envir}/$RUN.$PDY)
export COMOUTwmo=${COMOUTwmo:-${COMOUT}/wmo}
export COMOUTgempak=${COMOUTwmo:-${COMOUT}/gempak}

mkdir –p $COMOUT $COMOUTgempak $COMOUTwmo

export pgmout=OUTPUT.$$

env

$HOMEpmb/scripts/expmb_forecast.sh
export err=$?; err_chk

print starting time
prepend time to output
enable verbose logging

create temporary working
directory

set up temporal variables,
including PDY

alert output via DBNet
alert wmo output
send signals to ecFlow

sub-directories of the
current model

variables used in com
directory organization

locations of incoming data

locations of outgoing data

create output directories

output for executables

print current environment

execute ex-script
error checking

22

NCO WCOSS Implementation Standards v11.0.0 Last updated: January 19, 2022

if [-e "$pgmout"]; then
cat $pgmout

fi

if ["${KEEPDATA^^}" != YES]; then
rm –rf $DATA

fi

date

print exec output

remove temporary
working directory

print ending time

Example 9: ex-script expmb_forecast.sh

#!/bin/sh

Program Name: pmb_forecast
Author(s)/Contact(s): First Last
Abstract: Driver script for pmb forecast
History Log:
5/2014: Added error checking
8/2014: Modified for WCOSS
#
Usage:
Parameters: None
Input Files:
pmb.tHHz.anl
Output Files:
pmb.tHHz.fFFF.grib2
#
Condition codes:
99 - Missing input file
#
User controllable options: None

set -x

cpreq $COMIN/inputfile inputfile

export pgm=pmb_forecast

. prep_step
export FORT11=$FIXpmb/inputfile.tbl
export FORT12=inputfile
export FORT60=outputfile.grib2

mpiexec <options> $EXECmodel/$pgm >>$pgmout 2>errfile
export err=$?; err_chk

ex-script DOCBLOCK

enable verbose logging

copy essential input files into
working directory

name of the binary executable

clear FORTRAN unit assignments
set FORTRAN unit assignments

log program start
execute MPI program
error checking

check for required output
copy output file to output
directory

alert output file

23

NCO WCOSS Implementation Standards v11.0.0 Last updated: January 19, 2022

<pbs_release_nodes -a>

if [-s outputfile.grib2]; then
cpfs outputfile.grib2 $COMOUT/outputfile.grib2
if ["${SENDDBN^^}" = YES]; then
$DBNROOT/bin/dbn_alert MODEL PMB_FCST \

$job $COMOUT/outputfile.grib2
fi

else
err_exit "outputfile.grib2 was not generated"

fi

. prep_step
export FORT11=outputfile.grib2
export FORT51=grib2.t${cyc}.z.pmb.f000

$TOCGRIB2 <$PARMpmb/grib2_awp_pmbf000 >>$pgmout 2>errfile
if [$? –ne 0]; then
msg="WARNING: WMO header not added to $FORT51"
postmsg $jlogfile "$msg"
echo "$msg" | mail.py

fi

If multiple nodes were
requested and the remainder
of the job is serial processing,
release the extra nodes to
make them available to other
jobs. See pbs_release_nodes
man page for more options.

terminate the job if the
expected output cannot be
found

setup for tocgrib2 exec

define input file
define output file

add WMO header to file
error checking

Example 10: build readme file sorc/README
Build instructions:

1. cd to the sorc directory
2. to build all executables:

./build_pmb.sh
to build one or more executables, provide their name(s) as parameter(s):
./build_pmb.sh pmb_forecast pmb_post

3. to install all executables:
./install_pmb.sh

4. to clean sorc directory:
./clean_pmb.sh

Example 11: build script sorc/build_pmb.sh

sorc/install_pmb.sh and sorc/clean_pmb.sh are identical except replace “make” with “make install” and

“make clean”, respectively. These scripts can be combined into a single script using arguments.

#!/bin/sh
set –x

module reset
module use ../modulefiles
module load build_pmb.module

enable verbose logging

move to the source directory of the given executable
make the executable

print error message if build is unsuccessful

24

NCO WCOSS Implementation Standards v11.0.0 Last updated: January 19, 2022

sorc_root=$PWD

function build_dir {
cd ${sorc_root}/$1
make
if [$? –ne 0]; then
echo "ERROR: build of $1 FAILED!"

fi
}

if [$# -eq 0]; then
for source_dir in *.fd; do
build_dir $source_dir

done
else
for source_dir in $*; do
build_dir $source_dir.fd

done
fi

if no parameters were given,
build all executables

enter the build_dir function

if one or more executables were requested,
build those that were requested

enter the build_dir function

Example 12: modulefiles/build_pmb.module (to be loaded prior to compilation)
#%Module##
First.Last@noaa.gov
ORGANIZATION
PMB-FCST v1.1.0
##
proc ModulesHelp { } {
puts stderr "Set environment variables for PMB-FCST"
puts stderr "This module initializes the user’s"
puts stderr "environment to build the PMB model at NCEP"

}

module-whatis "PMB-FCST whatis description"

set ver v1.1.0
setenv COMP intel
setenv FC ftn

Load Cray parallel environment
module load cray-mpich/$::env(cray_mpich_ver)

Load Intel programming environment
module load intel/$::env(intel_ver)
Load NCEP libs modules
module load hdf5/$::env(hdf5_ver)
module load netcdf/$::env(netcdf_ver)
module load bacio/$::env(bacio_ver)
module load w3nco/$::env(w3nco_ver)
module load jasper/$::env(jasper_ver)
module load libpng/$::env(libpng_ver)
module load zlib/$::env(zlib_ver)

module DOCBLOCK

module help

module description

set version and
compiler variables

load intel and all ncep
library modules used
in the build process

Versions come from
sourcing
versions/build.ver
prior to loading
module

25

NCO WCOSS Implementation Standards v11.0.0 Last updated: January 19, 2022

Example 13: sorc/pmb_forecast.fd/makefile
##
#
Makefile for xxx
Use:
make - build the executable
make install - move the built executable into the exec
dir
make clean - start with a clean slate
##
#
Tunable parameters:
FC Name of the FORTRAN compiling system to use
LDFLAGS Options of the loader
FFLAGS Options of the compiler
DEBUG Options of the compiler included for debugging
LIBS List of libraries
CMD Name of the executable

LDFLAGS = -O -convert big_endian
BINDIR = ../../exec
INC = ${G2_INC4}
LIBS = ${G2_LIB4} ${W3NCO_LIB4} ${BACIO_LIB4} ${JASPER_LIB}
${PNG_LIB} ${Z_LIB}
CMD = pmb_forecast
DEBUG = -check all -ftrapuv
FFLAGS = -g -traceback -O3 -I $(INC)

Lines from here down should not need to be changed. They are
the actual rules which make uses to build CMD.

all: $(CMD)

$(CMD): $(OBJS)
$(FC) $(LDFLAGS) -o $(@) $(OBJS) $(LIBS)

debug:
FFLAGS += $(DEBUG)

test:
$(CMD) < input.txt > output.txt
diff output.txt valid_output.txt

install:
mv $(CMD) ${BINDIR}/

clean:
-rm -f $(OBJS) *.mod $(CMD)

Makefile DOCBLOCK
containing
instructions and use

name of compiler
options of the loader
executable location
include files
libraries (variables
from Lmod
modules)

executable name
debug options
compiler options

VIII. Appendix B: Variables and Directory Structure Tables

Table 6: Binary executable production utilities accessible via module variables

Variable exec Description Module
CNVGRIB cnvgrib Converts between GRIB1 and GRIB2 grib_util

26

NCO WCOSS Implementation Standards v11.0.0 Last updated: January 19, 2022

COPYGB copygb Copies all or part of GRIB1 file to another
GRIB1 file

grib_util

COPYGB2 copygb2 Copies all or part of GRIB2 file to another
GRIB2 file

grib_util

DEGRIB2 degrib2 Creates inventory of GRIB2 file grib_util
GRB2INDEX grb2index Creates index file from GRIB2 file grib_util
GRBINDEX grbindex Creates index file from GRIB1 file grib_util
GRIB2GRIB grib2grib Extracts GRIB records from a GRIB file

made by gribawp1
grib_util

TOCGRIB tocgrib Adds WMO header in front of each GRIB1
field

grib_util

TOCGRIB2 tocgrib2 Adds WMO header in front of each GRIB2
field

grib_util

WGRIB wgrib Creates inventory and decodes GRIB1 files grib_util
WGRIB2 wgrib2 Creates inventory and decodes GRIB2 files wgrib2
NDATE ndate Date utility prod_util
MDATE mdate Date utility prod_util
NHOUR nhour Date utility prod_util
FSYNC fsync_file Synchronize file across GPFS prod_util

Table 8: Structure of sub-directories under com

Subdirectory Description

$COMROOT/$NET/$model_ver/$RUN.$PDY/wmo WMO headed
output products

$COMROOT/$NET/$model_ver/$RUN.$PDY/gempak gempak output
products

Table 9: Structure of DCOMROOT directory

Subdirectory Description
$DCOMROOT/YYYYMMDD incoming data for one day
$DCOMROOT/YYYYMM Incoming data for one month (select types only)

$DCOMROOT/YYYYMMDD/bTTT/x
xSSS

BUFR data tanks

TTT and SSS correspond to the 3-digit BUFR data category type and sub-type, respectively

27

